Electrochemical coating of dental implants with anodic porous titania for enhanced osteointegration
نویسندگان
چکیده
Clinical long-term osteointegration of titanium-based biomedical devices is the main goal for both dental and orthopedical implants. Both the surface morphology and the possible functionalization of the implant surface are important points. In the last decade, following the success of nanostructured anodic porous alumina, anodic porous titania has also attracted the interest of academic researchers. This material, investigated mainly for its photocatalytic properties and for applications in solar cells, is usually obtained from the anodization of ultrapure titanium. We anodized dental implants made of commercial grade titanium under different experimental conditions and characterized the resulting surface morphology with scanning electron microscopy equipped with an energy dispersive spectrometer. The appearance of nanopores on these implants confirm that anodic porous titania can be obtained not only on ultrapure and flat titanium but also as a conformal coating on curved surfaces of real objects made of industrial titanium alloys. Raman spectroscopy showed that the titania phase obtained is anatase. Furthermore, it was demonstrated that by carrying out the anodization in the presence of electrolyte additives such as magnesium, these can be incorporated into the porous coating. The proposed method for the surface nanostructuring of biomedical implants should allow for integration of conventional microscale treatments such as sandblasting with additive nanoscale patterning. Additional advantages are provided by this material when considering the possible loading of bioactive drugs in the porous cavities.
منابع مشابه
Preparation of bioactive titania films on titanium metal via anodic oxidation.
OBJECTIVES To research the crystal structure and surface morphology of anodic films on titanium metal in different electrolytes under various electrochemical conditions and investigate the effect of the crystal structure of the oxide films on apatite-forming ability in simulated body fluid (SBF). METHODS Titanium oxide films were prepared using an anodic oxidation method on the surface of tit...
متن کاملNovel Bio-functional Magnesium Coating on Porous Ti6Al4V Orthopaedic Implants: In vitro and In vivo Study
Titanium and its alloys with various porous structures are one of the most important metals used in orthopaedic implants due to favourable properties as replacement for hard tissues. However, surface modification is critical to improve the osteointegration of titanium and its alloys. In this study, a bioactive magnesium coating was successfully fabricated on porous Ti6Al4V by means of arc ion p...
متن کاملAnodic oxidation of titanium for implants and prosthesis: processing, characterization and potential improvement of osteointegration
Among all biomaterials used for bone replacement, it is recognized that both commercially pure titanium (Ti c.p.) and Ti6Al4V alloy are the materials that show the best in vivo performance due to their excellent balance between mechanical, physical-chemical and biofunctional properties. However, one of its main drawbacks, which compromise the service reliability of the implants and its osteoint...
متن کاملEnhanced osteointegration of orthopaedic implant gradient coating composed of bioactive glass and nanohydroxyapatite.
We conducted histologic and histomorphometric studies to evaluate the osteointegration of gradient coatings composed of bioactive glass and nanohydroxyapatite (BG-nHA) on titanium-alloy orthopaedic implants and surrounding bone tissue in vivo. Titanium-alloy implants with a gradient coating (gradient coating group), uncoated implants (uncoated group), and implants with a conventional hydroxyapa...
متن کاملShort femoral stem and porous titanium: winning combination?
A lot of different implants are available in hip replacement arthroplasty (THA), stems differ mainly by type of fixation, material, length, diameter, shape, surface coating, modularity, etc. The main quality of a non-cemented stem is to pursuit primary and secondary stability, to preserve bone stock, to be adaptable and modular. The literature shows that the most popular non cemented stems used...
متن کامل